First Principles Simulations of Materials for Microelectronics

Phase change materials for data storage
Molecular dynamics simulations of phase change materials

Phase change materials (Ge2Sb2Te5 and related telluride alloys)  are attracting an increasing interest for applications in optical disks (DVDs) and in a novel non volatile electronic memory, the phase change memory cell. Both applications rest on a fast (10-100 ns) and reversible transformation between the crystalline and amorphous phases induced by heating. The two states of the memory can be discriminated thanks to the large contrast in electronic conductivity and optical reflectivity between the two phases.
By means of molecular dynamics simulations based on density functional theory (DFT), we investigate the structural, dynamical and electronic properties of the amorphous and crystalline phases of materials in this class aiming at establishing correlations between the composition of the alloy and the electronic and optical functional properties exploited in the devices. The models of amorphous phases (300-500 atoms) are generated by quenching from the melt.
Large scale molecular dynamics simulations are also performed by means of interatomic  potentials generated by  fitting  a large DFT database  with  Neural Network methods.

The Neural Network  potentials allow simulating several thousand atoms for  tens of ns to address the study of thermal transport at the nanoscale, of the crystallization dynamics and of the properties of nanowires. 

Surface phonon and topological insulators

Some chalcogenide compounds of interest for phase change applications belong to the class of topological insulators. Materials in this class are  bulk insulators with a non trivial topology of the electronic bands which induces the formation of topologically protected metallic electronic states at  the surface of interest also for applications in spintronics.  On the basis of  density functional perturbation theory, we study surface phonons and the electron-phonon interaction at the surface of topological insulators.

Principal Investigator

Research Lab