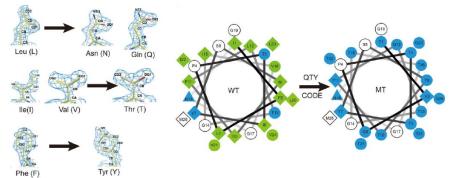


Ph.D. Course in Materials Science and Nanotechnology

University of Milano-Bicocca, Department of Materials Science, via Cozzi 55, 20125 Milano

June 5, 2019 – 2.00 p.m. Seminar room - Department of Materials Science U5


SHUGUANG ZHANG

Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts

QTY code, a simple tool for protein design

Shuguang Zhang in 2011 started to design membrane proteins. There are ~30% genes code for membrane proteins in genomes that are crucial for both internal and external cellular communications. He invented a simple and elegant molecular QTY code (glutamine, threonine and tyrosine) to systematically replace the hydrophobic amino acids leucine (L), valine (V), isoleucine (I) and phenylalanine (F) in the 7 transmembrane α -helices of G-protein coupled receptors (GPCRs). GPCRs function similar like our mobile phones to communicate and interact with external world. Our results suggest that despite 46%-56% transmembrane α -helices changes, water-soluble QTY variants still maintain stable structures and biological function, namely, ligand-binding activities. Our simple QTY code is a likely useful tool and has big impact for designs of water-soluble variants of previously water-insoluble and perhaps aggregated proteins, including amyloids.

Shuguang Zhang in 1990 made a serendipitous discovery of a repetitious and ionic self-complementary peptide segment in yeast protein Zuotin in 1990. This is discovery of the first self-assembling peptides that eventually led to the development of a new field of peptide nanobiotecnology. Furthermore, his discovery inspired numerous people around the world to design

a variety of self-assembling peptides for wide spread uses including peptide hydrogels in materials science, 3D tissue cell culture and tissue engineering, nanomedicine, sustained molecular releases, clinical and surgical applications. He co-founded a startup company 3DMatrix that brings the self-assembling peptide materials to human clinical and surgical uses.

Physics and Chemistry of Advanced Materials EUROPEAN DOCTORATE

SHUGUANG ZHANG, Ph.D.

Laboratory of Molecular Architecture Media Lab Massachusetts Institute of Technology Cambridge, Massachusetts Website: <u>Laboratory of Molecular Architecture</u> John Simon Guggenheim Fellow Google Scholar: Shuguang Zhang

Short bio:

Shuguang Zhang is at Media Lab, Massachusetts Institute of Technology. His current research focuses on **designs** of biological molecules, particularly proteins and peptides (fragment of proteins). He received his B.S from Sichuan University, China and Ph.D. in Biochemistry & Molecular Biology from University of California at Santa Barbara, USA. He was an American Cancer Society Postdoctoral Fellow and a Whitaker Foundation Investigator at MIT. He was a 2003 Fellow of Japan Society for Promotion of Science (JSPS fellow). His work of designer self-assembling peptide scaffold won 2004 R&D100 award. His and his colleagues' work for direct harvesting biosolar energy was selected one of the 10 finalists of the 2005 Saatchi & Saatchi Award for World Changing Ideas. He won a 2006

Guggenheim Fellowship and spent academic sabbatical in University of Cambridge, UK. He won 2006 Wilhelm Exner Medal of Austria. He is a Fellow of American Institute of Medical and Biological Engineering and Fellow of US National Academy of Inventors. He is a Foreign Corresponding Member of Austrian Academy of Sciences. He published >160 scientific papers that have so far been cited >28,300 times, with h-index 81. He is also a co-founder and board member of Molecular Frontiers Foundation that encourages young people to ask big and good questions that will be awarded for <u>Molecular Frontiers Inquiry Prize</u>.