Electrochemical energy storage and conversion

Prof. Fabio La Mantia, University of Bremen (D)

16 hours (2 cfu) 15-16-17-18-22-23-24-25/07/2019 14.30-16.30 8 hours (1 cfu) October 2019

Aims

Aims of the lectures are to supply the student with base knowledge about the physical chemistry of electrochemical systems and their application in the energy production and conversion.

Contents

Thermodynamics and kinetics in electrochemical systems. Transport in electrolytes. Electrified interfaces. Supercapacitors, lithium-ion batteries, post-lithium batteries, redox-flow batteries, fuel cells, electrolyzers.

Detailed program

Fundamentals of Electrochemistry: electrochemical thermodynamics and Nernst law; electrochemical potential; transport of charged species in solution and diffusion potential drop; double-layer theories and adsorption phenomena; electrochemical kinetics and overvoltage; heat generation in electrochemical systems.

Electrochemical energy storage and conversion: hydrogen economy; supercapacitors and pseudocapacitors; lithium-ion batteries; post-lithium-ion batteries; redox-flow batteries; polymer electrolyte membrane fuel cells; alkaline electrolyzers. Materials and configurations.