Dipartimento di Scienza dei Materiali Università di Milano Bicocca

October 27th, 2022, 14:30

Building U5, 1st floor, Seminar Room, via Cozzi 55, Milan

Linear and non Linear Photonics based on Topological Matter

Stefano Lupi

Department of Physics and INFN, Sapienza University of Rome Piazzale A. Moro 2, 00185 Rome, Italy

After the 2016 Nobel Prize in Physics, topological matter is now becoming a new paradigm in quantum physics and nanotechnology. 3D Topological Insulators (TIs) are the first class of quantum-topological materials ever discovered. They present an insulating gap in the bulk and linearly-dispersive 2-Dimensional Dirac metallic states at the surface [1]. After TIs, many other topological materials have been discovered, including magnetically-ordered 3D topological Insulators, Dirac-, Weyl- and Nodal-semimetals.

In this talk, I will review topological materials properties including their intriguing similitudes with some high-energy physics phenomena [2]. Moreover, I will discuss their linear [3] and non-linear optical properties [4, 5], suggesting some applications in photonics devices.

 J. E. Moore et al., Nature 464, 194 (2010);
N.P. Armitage et al., Rev. Mod. Phys. 90, (2018);
L. Tomarchio et al. NPG ASIA Materials, Accepted (2022); [4] F.Giorgianni et al., Nature Commun. 7, 1421 (2016)
P. Di Pietro et al., Nature Nanotech. 8, 556 (2013);

Progetto PRIN PHOtonics Terahertz devices based on tOpological materials (PHOTO) (CUP: H43C21000080001)

per informazioni contattare emiliano.bonera@unimib.it